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ABSTRACT

We are developing a new, second-order, monotone scheme for advection.
DPDC (i.e., double-pass donor cell) is based on Smolarkiewicz' simple,
positive definite method. Both schemes are multipass methods in which
upstream approximations to the truncation error are subtracted from the
equations. We describe two significant improvements to Smolarkiewicz'
method. First, we use a local gauge transformation to convert the method
from being positive definite to the stronger condition of being monotone.
Second, we analytically approximate the sum of the corrections of all the
passes to use in a single corrective pass. This increases the accuracy of the
method, but does not increase the order of accuracy. We compare DPDC
with van Leer's method for advection of several different pulses in a constant

velocity field.

INTRODUCTION

The solution of the advection equation is a necessary feature of continuous rezone
(ALE) codes! that simulate fluid flow. The advection algorithm must be accurate in the
sense of adding little numerical diffusion to the solution. Also the algorithm must be
stable and reasonably free of nonphysical oscillations. Donor cell, which is sometimes
called upstream differencing, is nearly monotone. However, donor cell has only first
order accuracy, and leads to excessive numerical smoothing of the solution in regions
of steep gradients. On the other hand, higher-order methods such as interpolated
donor celll can develop large oscillations in those same regions of steep gradients.
Centered differencing is unconditionally unstable.

A new class of schemes that are second-order accurate and monotone have been
evolving over the past 15 years. Some of these schemes are based on flux-limiting.2
Here a high-order method is used to calculate fluxes and to construct a trial solution.
This trial solution is then examined for new maxima and minima that can be identified
as being nonphysical. In regions where these new nonphysical structures are present,
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one blends in sufficient amounts of a low-order flux to preserve monotonicity. An
alternate approach3 is to attempt a higher-order reconstruction of the discrete field to be
advected. (Donor cell is equivalent to a piecewise constant reconstruction.) In these
schemes it is the variation of the reconstructed function that is limited. Both of these
approaches are similar in being based on preserving monotonicity of the solution.

Smolarkiewicz' simple positive definite scheme#4.3 is not based on preserving mono-
tonicity, but rather on the desirable properties of upstream differencing itself. The basic
idea is simple. Smolarkiewicz notes that the lowest order truncation error associated
with using donor cell advection is proportional to the second spatial derivative of the
field, and so the effective equation that we solve numerically is an advection-diffusion
equation. He formally rewrites the diffusion term in the form of an advection term, where
the velocity field (termed pseudo velocities) is based on the truncation error and is inde-
pendent of any physical velocity. Then he approximates this new advection term, again
using donor cell, and subtracts it. Since this is a first order approximation to a second
order term, the error is third order, meaning that the overall scheme formally has second
order accuracy. Note that this error can itself be approximated in the same manner, and
subtracted. This further reduces the magnitude of the truncation error, but does not
affect its order. (Increasing the order of the scheme would require introducing more
points into the difference stencil.)

Smolarkiewicz proposed his scheme as a simple and computationally cheaper alter-
native to the monotonicity preserving methods. However, we believe that it has other
advantages for multidimensional flows, especially on irregular meshes. These advan-
tages are associated with the scheme being naturally unsplit in space. The scheme as
published also has a few disadvantages. These are mainly associated with the fact that
it is positive definite, but not monotonic. Advected fields may exhibit small oscillations in
the neighborhood of steep gradients. The scheme also does not preserve the
maximum value of sharp peaks, and in general allows more numerical diffusion than
the mono-tonicity preserving schemes.

In DPDC (double-pass donor cell) we have created an advection scheme that is
monotone and accurate while preserving the simplicity and the unsplit nature of
Smolarkiewicz' basic method. The purpose of this paper is to describe two of these
improvements. In the next section we will briefly review Smolarkiewicz' method. Then
we will describe the use of local gauge transformations to convert the positive definite
algorithm into a monotone algorithm. We will next show how to approximately sum the
estimates of the truncation to all orders as a perturbation series in the Courant number.



Finally we will show calculations of advection of several different pulses, comparing our
new method with Van Leer's method.3

SIMPLE POSITIVE DEFINITE ADVECTION SCHEME
Consider the one-dimensional mesh shown in Fig. 1 with uniform cell size.
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Figure 1. A one-dimensional mesh with uniform cell size. The nodes are
labeled by the index i. The field to be advected is stored at the cell centers and
labeled by half integers.

The donor cell, or upstream advection scheme is defined by
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where F is the flux function
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Here WNj_1/2 is the value of ¥ at the cell center i-1/2, and at the Nth time step. The time
step is At and the width of a cell is Ax. The donor cell scheme in Eq. (1) is positive
definite if the Courant number is less than 1. (The scheme is monotone if the velocity
field u is spatially constant.) Expanding Eq. (1) in a Taylor series to second order
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From Eq. (3) we see that the donor cell scheme approximates not the advection
equation, but an advection-diffusion equation. The trick now is to express the diffusion
term as an advection term. We define an antidiffusive velocity v by
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Now we can reverse the effects of the diffusion term by adding the antidiffusive velocity
to the advection velocity in the donor cell step. This is equivalent to subtracting a donor
cell estimate of the truncation error at every point.

We have denoted the antidiffusive velocity with the superscipt (1). (N.B. superscripts
are always shown inside parentheses to distinguish them from exponents.) After sub-
traction, the new equation can be Taylor-expanded and shown to be
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This means that we could repeat the process defining another antidiffusive velocity v(2)
in terms of v(1). This process can be repeated indefinitely; the magnitude of the error
will be reduced after each extra step.

An important point here is that the values of ¥ used numerically to evaluate the
antidiffusive velocities are those that enter the cycle -- i.e., at time N -- and not those
after a first donor cell pass using only the velocity field u as suggested in
Smolarkiewicz' paper. That is, the scheme does not have to be multipass. There are
advantages to using a two-pass system, but in either case for better accuracy, the
antidiffusive velocities should all be evaluated using N-time information. In fact, for
reasons that we will describe later, we prefer to use a two-pass formalism.

MONOTONICITY

Monotone schemes and positive schemes are closely related. To begin, we note that
the advection equation with a spatially varying velocity field is not invariant under a
simple change of the zero point of the field --i.e., under a gauge transformation. Now
consider the transport of a square wave pulse through a background that is constant
and nonzero. After several cycles using the positive definite scheme, small oscillations
will develop around the leading and trailing edges of the pulse. These oscillations are

-4-



a purely numerical effect, since the solutions to the continuum equation are monotone.
Now if the background were at a zero level, then these oscillations would vanish. The
valleys are eliminated by the positive definite property of the algorithm. The peaks must
also vanish; because of conservation, they can only occur in conjunction with the
valleys. Thus, if we have any pulse being transported through a constant background of
level ¥M | we can convert a positive definite scheme into a monotone scheme by

1. global scaling of the field so that the background vanishes;

2. advecting the scaled field, and

3. rescaling the advected field to its original zero point.

Global scaling is simple, but is not useful in most circumstances. A more powerful
idea is a local rescaling in which the gauge varies at every interface. The local zero
point at an interface is chosen as the minimum value of the field in the two neighboring
cells and in each of the nearest neighbors of those cells. In the one-dimensional
example, the local minimum at the interface i is

min
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The gauge transformation is closely related to the concept of flux-limiting in schemes
like FRAM and FLOE.2

A similar technique can be applied to local maxima. In this case one transforms the
maxima into minima by reflecting the entire field -- i.e., by multiplying by (-1). Then one
follows the same recipe outlined above for minima. The choice of the local maximum
gauge is also similar to Eq. (6) with the max function replacing the min function.

For general pulses, the remaining question is when to use the minimum gauge and
when to use the maximum gauge. The answer (for reasons that we will not explain
here) depends on the sign of the second spatial derivative. When the function is
concave (the second derivative is positive), one uses the minimum gauge and when the
function is convex, one uses the maximum gauge. Note that when the function is linear
and the second derivative vanishes, the two gauges are equivalent assuring a smooth
transition.

There are several points that are worth mentioning in connection with the local
gauge transformation. First, using the gauge transformation means that the actual zero
point of the field becomes irrelevant. Thus, the fields we transport no longer need to be
positive definite. This is useful for dealing with the fluid equations, for the momenta may
be either positive or negative.



Second, the principal effect of the gauge transformation lies in altering the magnitude
of the antidiffusive velocity defined in Eq. (4). Consider a region in which the field is
exactly linear. In the positive definite scheme, the antidiffusive velocity will depend
inversely on the magnitude of ¥ and so will vary in space. After advection, the profile
will no longer be linear even if the advection velocity u is constant in space. After the
local gauge transformation, the antidiffusive velocity will depend inversely on (¥ - ¥M),
and in a linear profile will be constant. Thus, using the local gauge allows us to pre-
serve the slope in regions of linear variation. We note that the monotonicity preserving
schemes tend to oversteepen gradients and in general do not preserve slopes.

Finally, let us return to the point of deciding between the minimum and the maximum
gauge. We noted that this decision is based on the sign of the second derivative at the
interface. Computationally, the natural centering for the second derivative is at the cell
center, not the interface. This inconvenience can be avoided by using the advection
equation to convert one spatial derivative into a time derivative. Thus, our decision is
made by comparing the first spatial derivative across the interface before and after a
regular donor cell step. The sign of this difference, multiplied by the sign of the velocity
field, is the sign of the second spatial derivative. Furthermore, this concept generalizes
easily to two dimensions. It also can be applied to more general meshes of cells that
are not quadrilaterals, for example, for free Lagrange calculations.

SUMMING THE SERIES
Equation (4) defines a recursive relation for the antidiffusive velocity vk that
estimates the error of the kth pass. We can rewrite this relation is dimensionless form
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and the spatial index is suppressed. The first term, V(1) is defined by Eq. (4). We again
note that A is a constant evaluated from the field values at the beginning of the cycle,
and does not change. Using a large number of passes, each with its own antidiffusive
velocity, to reduce the error is equivalent to doing a single pass with the sum of all the
velocities
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The chief result of this section is that we can perform this sum approximately in the
sense of a perturbation series where the small variable is the dimensionless quantity
V({1). It is possible to show that
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The first condition is guaranteed by the Courant condition, and the second condition is a

result of the gauge transformation.
We expand each term of the recursion in powers of v(1),

2 4
Next, substitute this expansion into the recursion Eq. (7). The absolute value inside the
recursion requires us to distinguish between two cases. If A is positive, then VK is
positive for all values of k. Alternately, if A is negative, then VK is also negative for all
values of k. Let us assume that A is positive. Then
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Since there is a series expansion for V(k+1) |ike Eq. (10) , we have the set of recursive
relations for the various subseries
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Now sum the first relation of Eq. (12) overk=1,2,3, . ..
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Next, sum the second relation of Eq. (12) over k=1,2,3, . ..
> K (K
(15) Zp= AZg~ AZy, where X, = Za( o
k=1

To evaluate the second term of the right hand side, we multiply the recursive relation for
o by itself and then sum.
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In general, each of the sums can be handled in this way, being reduced ultimately to the
sum over some power of the oK) series. Also, the entire process can be repeated for

the case of A being negative. The results for the first few terms, valid for A of any sign
are
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Inserting these results into Eq. (8) leads to our final result
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Since DPDC could be written as a single pass scheme, we must enforce a Courant like
condition that the sum |u+ W} < 1. This is a kind of flux-limiting also, but is completely
local and does not require any reconstruction of the field.



RESULTS

We finish by showing some sample results of advecting several different pulses. In
each case, we solve the one-dimensional advection equation with a constant velocity
field in a uniform mesh. The Courant number was chosen to be 0.5. This turns out to be
a special choice in that the next order of truncation error, proportional to the third spatial
derivative of the field, exactly vanishes. On each figure we also plot the equivalent
result using Van Leer's method.3 In Fig. (2) we show a square wave, illustrating that we
can preserve the initial maximum value and have a monotone scheme. In Fig. (3) we
show a triangular wave, illustrating how well we can preserve the maximum value of a
sharp pulse. In Fig. (4) we show a sine wave, illustrating that we can treat fields that are
not positive definite. In each case, our method appears to as good or better than the
Van Leer method.
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Figure 2. A simple square wave is advected with a constant velocity for 200 zones.
The DPDC calculation is compared with a Van Leer scheme, and with the original
profile.



TRIANGLE WAVE TRANSPORTED 200 ZONES
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Figure 3. A triangular wave is advected with a constant velocity for 200 zones.
The DPDC calculation is compared with a Van Leer scheme, and with the original
profile.
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Figure 4. A sinusoidal wave is advected with a constant velocity for 200 zones.
The DPDC calculation is compared with a Van Leer scheme, and with the original
profile.
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